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SIGNIFICANCE AND EXPLANATION

The mathematical equation studied here has been considered as a model for

population genetics, combustion, and nerve conduction. A common feature to

all of these phenomena is the existence of traveling vave solutions. These

may correspond, for example, to the spread of an advantageous gene through a

population or the propagation of electrical impulses in a nerve axon. Another

common feature is the existence of a threshold phenomenon. In the nerve, for

example, a small initial stimulus will not trigger an impulse. If the initial

stimulus is greater than some threshold amount, however, a signal will

propagate down the axon. In this case the signal quickly assumes a fixed

shape and travels with constant velocity. Physiologically, it has been

demonstrated that this shape and velocity is independent of the initial

stimulus, as long as the stimulus is above threshold.

In this report we demonstrate that the mathematical model under

consideration does indeed exhibit a threshold phenomenon. We also study how

initial stimuli evolve into traveling wave solutions.
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A FREE BOUNDARY PROBLEM ARISING FROM A BISTASLE REACTION-DIFFUSION EQUATION

David Terman

Section 1. Introduction

In this paper we consider the pure initial value problem for the equation

(1.1) v xx + f(v), (x,t) e R x R+ ;

the initial datum being v(x,O) = O(x). We assume that f(v) - v - H(v - a) where

1
H is the Heaviside step function, and a e (0,-). This equation, but with smooth

f, has many applications and has been studied by a number of authors (see [1], [3),

[6]). Equation (1.1) is also a special case of the FitzHugh-Nagumo equations:

(1.2) vt = Vxx + f(v) - w

wt = C(v - yw), 0, y 0,

which were introduced as a model for the conduction of electrical impulses in the nerve

axon. Note that (1.1) can be obtained from (1.2) by setting e - 0 and w = 0 in

R x R . In their original model, FitzHugh [4] and Nagumo, et al., [8] chose

f(v) = v(1 - v)(v - a). McKean [7] suggested the further simplification

f(v) = v - H(v - a). The results of this paper will be needed in a forthcoming paper

when we treat the full system (1.2).

Our primary interest is to study the threshold properties of equation (1.1). That

is, if the initial datum O(x5 is sufficiently small then one expects the solution of

equation (1.1) to decay exponentially fast to zero as t + =. This corresponds to the

biological fact that a minimum stimulus is needed to trigger a nerve impulse. In this

case we say that (x) is subthreshold. One expects, however, that if (x) is

sufficiently large, or superthreshold, then some sort of signal will propagate.

Threshold results for equation (1.1) with smooth f have been given by Aronson and

Weinberger LI] Fife and McLeod [3] showed that if the initial datum is super-

Sponsored by the United States A.my under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under

Grant No. MCS80-17158.
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threshold, then the solution of equation (1.1), with smooth f, will converge to a

traveling wave solution.

Throughout this paper we assume that the initial datum, O(x), satisfies the

following conditions:

(a) v(x) e cl (a)

(b) P(x) e [0,1] in Rt

(c) (x) = V(-x) in R

(1.3) (d) 0'(x) < 0 in R+ ,

(e) Ox O ) - a for some x0 > 0

f) 0"(x) is a bounded, continuous function except possibly at lxi -x

This last condition is needed in order to obtain sufficient a priori bounds on the

derivatives of the solution of equation (1.1).

Note that in some sense x0 determines the size of the initial datum. We expect,

therefore, a signal to propagate if x0 is sufficiently large. In order to be more

precise we consider the curve s(t) given by

(1.4) S(t) - supfx:v(x,t) - a)

We say that the initial datum is superthreshold if s(t) is defined in ae and

lim s(t) I +. In this paper we show that if x0  is sufficiently large then Ax)
t+

is indeed superthreshold.

Note that because f(v) is discontinuous we cannot expect the solution of

equation (1.1) to be very smooth. By a classical solution of equation (1.1) we mean

the following:

Definition: Let ST - R x (0,T) and GT = (Cx,t) e ST, v(x,t) * a). Then v(x,t) is

said to be a classical solution of the rauchy problem (1.1) in ST  if

Ca) v, along with vx, are bounded continuous functions in ST,

(b) in GT, Vxx and vt are continuous functions which satisfy the equation

vt = Vxx + f(v)

(c) lim v(x,t) - P(x) for each x e R.
t+0
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We can now state our primary result.

Theorem 1.1: Choose a e (0,-). Then there exists a positive constant a such that
2

if (x) satisfies the conditions (1.3) with x0 > 0, then equation (1.1) processes a

classical solution in R x i+ and (x) is superthreshold. Furthermore,

s(t) e CI(U+), and s'(t) is a locally Lipschitz continuous function.

Note that for the model we are considering it is trivial to give sufficient

conditions for the initial datum to be subthreshold. In particular, if (x) < a for

each x e a then, from the maximum principle (see [9], page 159), v(x,t) < a in

2 x Se
. 

Hence v satisfies the equation

vt v xx - v in R x+

From this it follows that Iv(.,t)l + 0 as t * a, and the initial datum is

subthreshold.

We prove Theorem 1.1 by studying the curve s(t) given by (1.4). Note that if

the initial datum (x) satisfies the conditions (1.3) then there must exist some

positive time T such that in the interval [0,T], s(t) satisfies the integral

equation

t s(T)
(1.5) a - f K(s(t) - &,t)P(E)d& = f dr f K(s(t) - t,t - )dE

-- 0 -s(T)

-t -2/4

where K(x,t) - - e2 is the fundamental solution of the linear differential

equation t =*xx - 4 Here we give a formal explanation of why this is true. We

then show how to construct a solution of the initial value problem (1.1) given a smooth

solution of the integral equation (1.5).

From assumptions 1.3(c) and (d) we expect that vx (x,t) < 0 in V
+ 

x R
+  

In this

case s(t) will be a well defined, continuous function for some time, say t e [0,T].

-3-
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it also follows that v >a for lxi < s~t) and v < a for lXI > 9(t). Let XGbe

the indicator function of the act G ={(x,t):v(x,t) >a; 0 4 t 4 T1. Then, for

1x1 * s(t), v(x,t) siptisfies the inhomogeneous equation

(1.6) Vt X G

with initial datum v(x,O) - P(x). Formally the solution of (1.6) can be written as

-t a(T)
(1.7) v(x,t) -f K(x - E,t) P(&)d + f d-r f K(x - E,t - rd

-e0 -a( T)

Setting x s at) in (1.7) we obtain (1.5).

Lemmsa 1.2: Suppose that a~t) is a continuously differentiable function which

satisfies the integral equation (1.5) in (0,T]. Then the function v(x,t) given by

(1.7) is a classical solution of the initial value problem (1.1) in R x (0,T).

Proof: Setting x - s(t) in equation (1.7) and subtracting the resulting equation

from (1.5) we find that v(s(t).t) - a in [0,T). Differentiating both sides of (1.7)

ve see that for x * s(t), v(x t) satisfies the differential equation v t - v xx + f~v

in A x (0,T). It alwo foll'jws from (1.7) that lim v(x,t) = p(x) for x e n. We now
t+0

show that v(x,t) is differentiable whenever x =s(t).

First assume that I&I < s(T). Then v(E,T) satisfies the differential equation

v T- v EC+ v

Multiplying both sides of this equation by X(X - F,t T ) and using the fact that

x + K K -0 we find that

(xv) -(Xv) +(KV) E K.

Assuming that lxi < s(t) we integrate this last equation for -S(T) < F~ < s(T),

C( < <t-e, and let c +0 to obtain:

-4-



Xo t

V(Xt) - K(x - .,t),P(E)dE.- K(x - s(r),t - )as'(T)dT
-x0  0

t t
- f K(x + s(O),t - )as'(r)dT - f Kx - S(),t - )S(T) - TT)dr

0 0
(1.8a)t

f K(x + s(r),t - r)V (S(),T)dT + f aK (x - S(Tr),t - Td

0 0

t t a(t)

- f aK (X + s(T),t- T)dT - f dT f X(x - t- T)d .
0 &0 -s(T)

Next assume that E > s(TY. Then v(F,T) satisfies the differential equation:

v - v + v 0 0. Multiplying both sides of this equation by K(x - E,t - T) we find

that

(Xv) -(KvE)E + (Kcv) & 0.

We integrate this equation for S(T) < & < W, C < T < t - C and let c + 0 to

obtain

at
- ~ K(x - E,t)P(E)dF + f K(x - B(T),t- T)as'(T)dT

(1.b) x0  
0

t t

+ f K(x - s(T),t - T)V(s(T) + ,T)dT - aK (x - s(T),t - T)dT 0
0 0

Similarly, for E < s(T) we obtain

"Xo t

- K(x - F,t - T)dE + f K(x + s(r),t - )as'(T)dT

-- 0
(I.8c)

t t

f (x + s(T),t - T)v (-S(r)-,T)dT + f aK (x + S(T),t - T)dT- 0
0 0

Addinq (1.8a), (1.8b), and (1.8c), and using (1.7) we find that for t e (0,T)
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t +

(1.9) [X(x - s('r),t - T)CV (s(r) ,T) - v&(s(r),r)l

+ K(x + s(r),t - T)[Vt(-s(T)+,T) - vC(-S(T)-,T)] ]dT - 0

However, because of assumption (1.3c) it follows from equation (1.7) that

v(x,t) - v(-x,t) in R x (0,T). Therefore, (1.9) can be rewitten as

t
f K(x - s(T),t - T) - K(x + s(T),t - r)](v (s( ) r) - v (s(r)-,r)ldr - 0
0

From this it follows that vx(s(t)-,t) - vx(s(t) ,t) for each t e (0,T). //

In Section 2 we present some notation and prove a few preliminary results which

are needed throughout the rest of the paper. In Section 3 we show that for some tine

T there exists a solution of the integral equation (1.5) in [0,T]. In Section 4 we

prove that the solution of (1.5) is unique among Lipschitz continuous functions, and in

Section 5 we prove that the solution of (1.5) is continuously differentiable. In fact

we show that s'(t) is locally Lipschitz continuous. Finally, in Section 6 we

demonstrate that if x0  is sufficiently large, then the initial datum, (x), is

superthreshold.
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Section 2. The Operators 0 and E)

We first introduce the followinq notation.

Throughout this paper we assume that *(x,t) is the solution of the linear

differential equation:

(2.1) *= -

in R x e with initial conditions

-t x2/4
Noe ht px~) f K(x - E,t) P( )dE where K(x,t) = e -/t

Note tat 1Ix~t) 2 /2

Now suppose that a(t) is a positive, continuous function defined for t e [0,T).

For values of t0  and t which satisfy 0 4 t 0< t 4 T we define the operators:

t a( T)
O =)t - dT f IC(adt) - ,t - Td

0 -a(T)

,I (00)(t) = 0(cz)(t) - V(c)(t

0(a)(t) =a - *(a(t),t)

e (ci)(t) = (a)(t) - @(a)(t 0 = (~ 0 -I (~ I

k Note that s(t) is a solution of the integral equations (1.5) for t e [0,T] if and

only if

to (s)(t) = 0 (8)(t)

for all values of to and t such that 0 4 t 0 <t 4T.

Definition: Suppose that adt) is a positive uniformly Lipschitz continuous function

defined in (0,T). We define adt) to be a lower solution in [0,T) if

0(a)(t) ) W()t) in (0,T). if 0(ci)(t) 4 8(a)(t) in (0,T] then adt) is said

to be an upper solution in 10,T].

In Theorem 4.1 it is shown that if at(t) and B(t) are respectively lower and

upper solutions in (0,T) then adt) 4 6(t) in (0,T]. This implies that the
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solution of (1.5) is unique among uniformly Lipschitz functions. We prove threshold

results by showing that if xO is sufficiently large then some vertical line

£ I(t) - x is a lower solution in +. This will imply that s(t) ; x in e+. Using

this preliminary result we then show that lim S(t) = =, and hence the initial datum
t+.

is superthreshold. In the rest of this section we prove those properties of the

operators 6 and 0 which are needed for the proof of Theorem 1.1. We assume

throughout this section that a(t) and 8(t) are positive continuous functions

defined on an interval (0,T].

Lemma 2.1: Assume that for t0 < tI, a(t0 ) 4 (t 0 ), and a(t I ) > 0(t ). Then
9t0(a)(t I ) > ot0(0)(t I)-

Proof: Recall that t0 (a)(t I) = -(X(t0)It0  -(a(t I)  where *(x,t) is the

solution of the linear differential equation

with initial datum *(x,0) - (x)o From assumption (1.3)(d) and the comparison theorem

(see [9], page 159) applied to &bx,t) it follows that *, (x,t) < 0 in R x R4 .

Therefore, *(a(t0 ),t0 ) > C(8(t 0 ),t 0 ) and (ac(tIt).t1  < (48(tl,tI). From this the

proof of the lemma follows immediately. //

Lemma 2.2: Assume that a(t) 0 8(t) in [O,t 0], a(t) > S(t) for some

t e (O,t0 ), and a(t 0 ) = 8(t 0). Then 0(a)(t ) > f()(t0).

Proof: This is an immediate consequence of the definition of 4. ///

Lemma 2.3: Assume that a(t) e C (0,T). Then Ca)(t) e C (0,T) and

x0 t
(2.2) NCa'(t) = M K(a(t) - &,t)d& + f K(a(t) + aC(T),t - T)[a'(T) +

-x 0

t
+ a'(t)JdT + f K(a(t) - a(r),t - T)a'(T) - a'(t)ld

0

-8-



Proof: Note that

0()()- 11.-- E(a)(t + C) - at)

- lrn -1 ift drC f ITK(a(t + c)-FE.t + £ -Od

t a(T)]
- f d-r f K(a~t) - t,t - TdE0 - C&( T)j

- ri 1[t d a( r+C)+a(t)-cx(t+e) at)-E Td
imO £ L£ dr - )+c(t)-a(t+C) czt- t-

t a(T)
- f d-r f K(a(t) - t,t - T)d Elo -ci(r)

- 1 [fodT f~ ~)ut)ct K(c(t) - E,t - rd

C0£ L-C -a )+ n )C ~ +C
t -M(T)

0 -l(rT) + C(t) - C(t+ C)

t a( r+ 0+ a(t) - (t+ c)
+ f dT f K(a(t) - E,t -~

0 M(r)

Passing to the limit we obtain (2.2). I/

We conclude this section by finding sufficient conditions on the initial datum for

there to exist lower and upper solutions. We assume throughout that the initial

datum, o(x), satisfies the conditions (1.3). we first wish to prove that there exist

positive constants 0 and r such that if x0 > 0 then for some x e (x0  r,x)

the vertical line I 1(t) =x is a lower solution on le.* The proof of this result is

broken up into a few lemmas.



Lema 24: et (x0 ( t - 0
Louis& 2.4: rt x0)(t) dT f 0 K(x 0 -,t 0 -)d and fix e 6 (0,- - a). There0 0 -x 0  0 a2

exists a positive constant 6(-) such that if x 0 > 0(c), then

(xO)(t) + N(X0 )'(t) ) a + e in 
.

Proof: Let a a+C

£

t. -iog( - a)

1 I0--a,-
Smi(22 - , 2 C)

20 1+t0

and

2t'12
e(e) - max(1,2t0 log

Assume that x0 > 8(c). The proof will be broken into two steps. First assume

that t e (O,t0 ). Then, using 2.2,

t Xo xo

f(xo)(t) + (Xo)'(t) - f dr f A(x0 -,t-r)Od + f K(x0- ,t)dEo0 -x -x0
a _x _

t x0 x0
- f di f ,(x 0 - ,t-T)dE + f K(X0 - ,t)dE

0 -- D -

(2.3)
t -x0 -x0

- If d-r f C(xo-C,t--r)d + f K(xo-.,t)dl
0 8 -x -x

2 - If dr f K(x0 - ,t-r0d& + f K(x0 -E,t)d l

0 -

We now show that for T e [O,t)

-x
0

(2.4) f K(x 0 - ,t-T)d& < 6

From this and (2.3) it will follow that for t e (O,t0 ),
1 1

O(x )(t) + t 2 - ( + t)6 > 2 (I + to) a

-10-



Now (2.4) is true because for T e fo,t):

-X e-(t-[) -Xo 4(x-x)

--

-(t-i) -X0S- T4(t-i)
2 t- 2 t -T/

The last inequality is true because x0 > 8(c) ) 1. Therefore,

xO 2It-T)1/2 -x 0/2(t- r) -1t-T)

f 1(x 0-,t-r)dE C V e e
-X ,

2t/2 -x /2t

(e

2/2 -(c )/2t
0

0 e

Now assume that t > t 0 Then,

t 0 x0
0o 0

4Cx )(t) + (x )'(t) ) (x )(t ) = d f K(x 0- ,t0-i)d

0 -0

t 0 -x0

f di f K(x 0-&t 0-T)dE
0 '

Since

to  x0  -to

f d-t f K(x 0 - ,t0 -)d 
2 -2e

0 -m

we conclude from (2.4) that

-t 0

( 0) t) + (x o'(t) 2 -6t 0 a

-11-



Lemma 2.5: Fix e 8 (0,- - a) and let 6- 9(c). r.et 8 e + 1 a/2
___ () and

r a for lxi 6

Cx a j 0 for - 6) 2 for x e me6i

a - -(x + 6) 2for x e (-6 ,-6)

Assume that: a) pCx) > h (x) for lxi <

and b) sP(x) )- h Cx) 0 for lx1 > x

Then there exists x e me6i such that the line t I (t) =xis a lover solution in

e.

Proof: Because of our assumptions on sP(x) there exists a function sP ICx) such that

Ca) w1Cx) ec

(b) h Cx) < s C (x <(x) for lxi 4

Cc) h Cx) 4 P 1 (x) C pCx) for lxi >

(2.5) (d) sP(x) < 0 for x ), 0

(e 0 1 x -0(-x) in R

(f) 0,(x~) < a + 1 in R

(g) P 7 (x) )- in R

From these assumptions it follows that 0,(R) - a for some unique constant

x > 6. Let *1(x,t) be the solution of (2.1) with initial datum 1CxW. Since

P(X) ), I(x) in le it follows from the maximum principle that *,Cx,t) > *,(x,t)

in R x Fe. *we show that a -*(;,t) 4 0(;)(t) for t e R. From this it follows

that a - 4(x,t) < a - *JX,t) 4 OVx)Ct) and hence the line X C t) is a lower solution

in Te.

We wish to show that a -,(X't) 4 *Cx)Ct), or 1(x,t) ;P a - *Cx)(t) for

t e e4 . Let g(x,t) -o 1C(x) 0(;C)(t). We show, using a comparison argument, that

4(X,t) > g~x,t) in R x R* Since P,(R) - a this certainly implies the desired

result.

In order to apply the maximum principle note that

g(x,O) 01Cx) = 1 x,0)

-12-



t

and

gt- gx + g - -[$(x)(t) + *(x)-(t)] +l(X) -1 (x)

4 -(a+C) + (a + 1) + - 0 -
+

2 2 I, t 4 1xx I'

In this last calculation we used Lemma 2.4 and assumptions 2.5(f) and (g). Prom the

maximum principle (see (9], page 159) we conclude that J(x,t) b g(x,t) in t x le,

and the result follows. /

Lemma 2.6: There exists positive constants r and e such that if the initial

datum o(x) satisfies (1.3) with x0 > e, then, for some i e (x0 - r,x0 ), the line

I (t) - x is a lower solution in W+.

Proof: Choose c e (0,1 - a), r - (a , and 6 - O(e) + r. The result now follows

from the previous lemma.

We now prove the existence of an upper solution.

Le_2.7: There exists a linear function 2(t) such that 12(0) - x. and 12(t)
is an upper solution on t0,2 ] .

Proo____: Recall the function *(x,t) defined to be the solution of equation (2.1) with

initial datum *(x,0) = (x). From assumptions (1.3d) and (1.3f) it follows that there

exist positive constants 6 and 62 such that ,t(x,t)I < 2 and 4,J(x,t) <-61
x
0  

11 + t 2

in the region (y--) x and define 12 (t) by

t2 W 4 +x0 .

In order to show that Z (t) is a supersolution in (0,-1 consider the curve
2 2

S(t) defined implicitly by the equation 6(t),t) - a - t, 8(0) - x0 ' Note that

t) " (B(t),t) - < "* Hence BM 1 2(t) in (0,2). From Lemma 2.1 it

follows that for t e (0,a),
2

@(I2)(t) > WOW() a - *(Mt),t) -t•

On the other hand,

-13-



O = 2 )rJ (9 t) -f Tf ,t -O~dt f I d'r -t
0 -1U 2 0

Therefore, 0(1 )(t) <e(1 )(t) for t S (0. which means that It) is a super-

solution in 10, a

-14-



Section 3: Existence of s(t)

Throughout this section we assume that there exists linear functions I (t) and

t 2(t) which are respectively lower and upper solutions in [0,T] for some positive

time T. Recall that s(t) is a solution of the integral equation (1.5) in [0,T) if

and only if

t0 (s)(t) - 0 (s)(t)

for 0 ( t0 < t < T. We prove the existence of a solution of (1.5) in [0,T] by

constructing a sequence of continuous, piecewise linear functions {a nt)} with the

properties that sn(0) - x0  and, setting tj n ,

etj(sn)(tj+i) = t ( n)(tj+l ) for j - 0,...,n - 1; n = 1,2,...

This sequence of functions is shown to be equicontinuous and uniformly bounded.

Therefore, by the theorem of Arzela and Ascoli some subsequence of {s I convergesn

uniformly to a continuous function. This continuous function is shown to be a solution

of the integral equation (1.5).

Lemma 3.1: For each positive integer n there exists a continuous piecewise linear

function sn(t), defined in [0,T], such that I 1(t) C s (t) ( 2 (t) and, setting1 n 2

tj =in e

t (sn)(t j+1 = Otj(sn)(tj+i), J = 0,1,...,n - 1; n = 0,1.

Proof: Fix n. Set an(0) - x0  and suppose that we have found points xo,xl,...,xk

such that 1(t 4 x ( i) j = 0,1,...,k, and, if sn(t) is the piecewise

linear function connecting the points (xjtj), then

0 t(s n)(tj+} = tj(sen)(tj+) j = 0,1,...,k - I

For x e (I (t k+1), 2(t k+)), let

sn(t) for t 4 tnk

a(x)(t) = The line segment connecting (xk tk) and

(x,tk+1) for tk < t 4 tk+ I

-15-



By induction the proof of the lemma will be complete once we have proven the existence

of a point xk+, such that £1 (XI + 1 ) 4 xk+ 1 4 2(tk+), and

0(a(xk+l))tk+ 1 - x((xk+M))(t k+). To prove the existence of xk+ 1 we first

let x
1 

. t kt ) and show that 0 ((x ))Ctk+l ) - e Ccg x I)Mt k ) 0. We then1 itk+1 ( (kx1)t(tk+1))0 ete

let x
2

- 2 (t k+1) and show that 0 (x 2))tk+1 ) - ( (a(x
2 
))t k+) 4 0. Since

0 (a(x))(t+ 1 - e (Q(x))(t is a continuous function of x it will then follow

that there must exist a point x + 1 e [x ,x such that

*4 C(x k+1))(tk+1) -- 8 (aC k 0.

Note that a(x )(t) > £1 (t) for t e (O,t,+l). From Lemma 2.2 it follows that

0(a(x ))(tk+1) 0 ( 1 )(t +. From Lemma 2.1 it follows that

0(0(x ))tk+1) - E( 1 )(tk+1). Therefore, since II(t) is a lower solution,

O(d(x ))(tk+l) - M(k(x1))(tka ) > 0(1 )(t k 1 ) - O(A )(tk+ 1 ) > 0. Since

C(x )(t) = an(t) for t e (o,tk ) it follows that *a(x lIt) - C(a(x lIMtk

=C n)Mt ( k ) - (s n)(t n - 0. Hence,

4t k ((x I)) (t 1)  "t tk ((x I)) (t+ , )

[O(C(x I )(t 1 (c(xcI))(t )] - [@(Q(x )) t - ( x))(ta)] 0

A similar argument shows that f$ (i(x 2Mt k+ 1 -E (Q(x 2))tk+) ( 0. From our

previous remarks this completes the proof of the lemma. ///

In order to apply the theorem of A-zela and Ascoli to conclude that a subsequence

of (0 (t)) converges uniformly to a continuous function we need to show that thein

sequence {s (t)) is equicontinuous. We now prove this to be true if T is chosenn

sufficiently small.

it1I(T)

T 1

Lemma 3.2: If T is chosen so that e T -- then the sequence (an(t)} is
4 i

equicontinuous on (0,T].

Proof: Let B be the region bounded by I(t), t 2(t), t - 0 and t = T. From

assumption (1.3d) it follows that x (x,t) < 0 in B. Choose 61 to be a positive

constant such that *,(X,t) < -61 in B. From assumption (1.3f) there exists a

-16-
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positive constant 62  such that l 4(x,t)l < 62  in 8 (see (41, Theorem 6, pg. 65).

Let M - sup X(tI(t) + I (),t - T) and E - min(i,T).
O <t4Tr 1

Since each function an(t) is plecewise linear it suffices to show that the

derivatives s;(t) are uniformly bounded whenever they exist. We first find a lower

bound on sa(t) for t e (0,T) and n 0,1,2....In fact, suppose that p is a

positive integer such that pt < T. We show that s (t) ) 2 for each n and

t e (0,p ) such that so(t) is defined.

Suppose that this is not true. Then there must exist positive integers m and6

n such that I m < p, s'(t) < -2' for some t e ((m - i)E,mf), and

1 °12sn'(t) > -2'- for t < (m - 11 . Since snlt) is piecewise linear we may assumen-1 .62
Im a2 < k

that for some integer k, s'(t) -2 tfor t< t and 6nlt -2
n 6 1n' n 6

for t 6 (tk,tk+ ). We show that Vsn )'(t) - O(s n)'(t) >0 for t 6 ( tkctk+l). This

immediately leads to a contradiction because (sn)(tk) - e(sn)(tk) - O(Sn)(t+1)

-0(sn)(tk+l) - O.

We first estimate (s n)'(t) for t e t tk 1). Using (2.2) it follows that:

lM-Iltl

(s )'(t) >f V(Snt) + Sn(),t - )(S(T) + sn(t))dT
n lo 1 n n n

(m-I)t I

+ f Vs(t) - n (T),t - T)(s'(T) - sn(t))d
0 n

I-t
+ f sn t) + S(T),t - T)(SnlT) + sn'(t))dT

(in-1)t I

t
+ f Ke t) - 9 (T),t - r)(sn(T) - sn(t) = (I] + [II]
(-)tI

We show that [I] > 0. Recall that for T a (0,(m - )t),
o () >2 m 1 6 2

8T) -2- > sn(t). Hence
n 6

-17-
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+ (T, T)C0
Cii) -J[ UCK(ftt ) + ,nt . ,),t .)

tsC)+ 2a- -bC1maCt) - a~ Cr),t

The right hand side is positive if for each T ( Cm -

(Sn(t) + snlT))
2

2st-r) " 4(t T)

ft 2 1/2 (t - 2

(an(t) - nlT)

1 "
{a (t-7) " 4Ct- T)

KIM +. It) 2 I
2 (t _)/2

8nMft(T a, 62t4 u- t5

or e < - 29'(t)
n

This is true because

nt(t)n(. r) 
CT)

2

t- T* (a 4

by itsimption and

81(t) + 2M-1 _2

'. I +21R-2 '2

2*'Ct) 2 *() 1  4
n

We have therefore shown that III > o. On the other hand,

t

til)f 2&Ct)Kl 1 CM + I iC()0t - )dr ;P 2an Ct)t1?4

Therefore, *(n)'C(t) > 2ft 1sn(t).

-18-
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We now show that e(sn)1(t) < 21M4E(t) for t e (tkltk+1). This is true because

(S n )(t) = -*X(Sn(t),t)s'(t) - t sn(t),t)

1on(t) + 62 - 4Mts(t) + 62

C 4Mts'(t) - 2Mts;(t) - 2Mts'(t)

We have therefore shown that (s n)'(t) > O(sn)'(t) for t e (tk,tk+l). As was

mentioned earlier this leads to a contradiction. Hence, the uniform lower bound on

s'(t) follows. Using a similar argument one can obtain a uniform upper bound on

sB(t)o In fact, if P is chosen so that PE < T then one can show that
I, + 6,

s*(t) C 2 6- 2) for each n and t e (O,Pt) such that so(t) is defined (see [91

for'details). From our previous remarks this concludes the proof of the lemma. ///

Since the sequence (a n(t)) is equicontinuous, and uniformly bounded by the lower

and upper solutions I(t) and 2(t) on [0,T], the theorem of Arzela and Ascoli

guarantees that a subsequence, (a nk(t), converges uniformly on 10,T] to a

uniformly Lipschitz function s(t). To simplify notation we write

( nk(t)} - {a n(t)}.

Lemma 3.4: s(t) is a solution of the integral equation (1.5) in (0,T].

Proof: Let c be an arbitrary positive constant and choose to e [0,T]. We show that

I*(s)(t 0 ) - C(s)(t 0 )1 < £ by estimating, for sufficiently large n, each term of the

inequality

Is(s)(t 0 ) - 0(s) (t ) I(s)(t 0 ) - (S )t k)I

+ I( n)(t k ) - )(8n)(t ) + E)(sn)(t k ) -O(s) (t0 )1

Here k is chosen so that t0  (tk,tk+l).

It follows from the construction of Sn(t) that 14(s n)(t) - 0(an)(tk) . .

FurLhermore, because the function p(x,t) is uniformly continuous and the sequence of

functions (n (t)} are uniformly Lipschitz continuous, it follows that

Ie(sn)(tk) - O(s)(to) < for n sufficiently large. It remains to show that

-19-



I$(N)(to) - (s ) It < I for n sufficiently large. Setting

A @nCt k ) - s(to), this is true because

to s[ ()

14(-)(to) - n)(t ,)l -f dr f X(S(to) - Et o - d

t k  sn ST)

-f dtr K(en(t ) -,t - T)do -sn () Ic I

0 fn(T+tO-tk)+ Mk

k-tO0 -s( T+tOD-tk)+ '

t k  - n(r)

+ f dr f KSn(tk  - k -)dE
0 -(t+ttn-t k  )-+X-

t k  s (Tt 0-tk )+A

+ f dT f CS n(t k ) - tk -)d0 a n(T)

( It - t01 + 4 SUP tS(T + t0 - t k) - Sn(T) If dTkO r-Tt k  0 2 w 2 ( k - )

2

if n is sufficiently large. In the last inequality we used the fact that 9(t) is a

Lipschitz continuous function and Itk - tol < 1. ///
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Section 4. Uniqueness and a Comparison Theorem

We have so far shown that if T is chosen so that there exists linear functions

and £2 (t) which are, respectively, lower and upper solutions in [0,T1, and
-LI (T)/T I

I 1e 4 (, then there exists a uniformly Lipschitz function s(t) which

satisfies (1.5) in (0,T]. The following Theorem demonstrates that the solution of

(1.5) is unique among uniformly Lipschitz functions.

Theorem 4.1: Suppose that a(t) and B(t) are respectively lower and upper solutions

in [0,T,]. Then a(t) ( 8(t) in [0,T].

Proof: Note that we must have n(O) 4 x0 4 8(0). If, for example, a(0) > xo, then

*(a(O),O) < a. It follows there must exist some time, t0 , such that

*(a(t),t) < a - t for t e (o,t0 ). Therefore, 8(a)(t) a - *(c(t),t) > t for t e

(M,t0 ). On the other hand,

t s(T)

f(u)(t) - f dT f a((t) - E,t -T)d
0 -s(r)

t
1 f 1 dT- t
0

for all t e le. Hence, e(a)(t) > (Ot) in (0,t0 ), which contradicts the

assumption that a(t) is a subsolution. A similar argument shows that it is

impossible for B(O) < x0 .

If (0) < N(0), then we must have ct(t) < 8(t) in (0,T). If not, we let

to = inf{t:a(t) P 0(t)}. Then a(t ) = 8(t ) and a(t) < 8(t) in (O,t0). Lemma 2.1 now

implies that 8(a)(t 0 ) >8(8)(t 0), while Lemma 2.2 implies that 0(a)(t ) < *(8)(t 0).

Since a(t) is a subsolution and 8(t) a supersolution, we now have

0 (a) (t o0 ) 4 N(a)(t 0 ) < 0(0) (t o )  8(s) (t o0 < 9(a)(t ) •

This is an obvious contradiction.

Throughout the rest of the proof we assume that a(O) -8(0) = x0.

Suppose the lemma is not true, and let t0 = infftc(t) > 0(t)}. Then,

a(t) M 8(t) for t e fo,t 0 ]. This is because, if a(t) < 8(t) for some

-21-
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t S [Otos, it would follow froa Lomas 2.1 and 2.2 that

(c)(t0 ) < (8)(t 0 ) C e(6)(t O) - e(a)(t 0 )

This, however, contradicts the assumption that n(t) is a lower solution.

We prove the lema by showing that there exists soe" t ) to such that

o t) > (t) and *(n)(t) < *(s)(t). This leads to a contradiction for the following

reason. Since a(t) ) 0(t), and a(O) - 0(0), it follows from Loama 2.1 that

8(c)(t) > e(B(t). If it is also true that *(a)(t) < O(B)(t), then, since B(t) is

an upper solution, 6(a)(t) < 0(0)(t) 4.e0()(t) < 0(a)(t). This, however, contradicts

the assumption that c(t) is a lower solution on (0,T).

For t > t o , let e(t) a ct) - t). Choose • to such that e(i) > 0 and

d(t) < e(t) in (0,f). Then,

t O(T)
#(0)(i) - f d~r f X(B(t) - E,t -~do -0(r)

0 O(T)*t

- f dT f K(ai) - ,i - T)d
0 -(T)+(t)

+ f t o dr fB(T)+E(t) T.K(U() -
o a( T)

- 0 1 -0r)+(- ,) -(i) T)

0 -a(T)

o (T)+C;+ fdr f Kat ,

- f dr f K(c ) - t -

t o  -0(r)

S*(a)(t) + [I] + (III

Recall that we wish to choose t so that $(6)(t) > *Ca)(t). Note that [1] > 0.

This is because, if (MT) 6 (0,t(t)) x (O,t), then lm(t) - (r) + W

-22-
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< ICL(t) + 8(T) - CI, and, therefore, K(a(t) - ( (T) + E),t - T)

) (a(t) + B(T) - &,t - T).

To complete the proof of the lemma it remains to choose t so that [II] > 0. We

rewrite [II] as

[II f - - K(i(t) - Ct- t)d~dT - f - K((t) - &,t- T)d~dr
A(A) 2 (t)

where AY(E) - {(Er).t0  0 ( t, '(t) T C < 8(r) + E(t),

A2 (E) - {(CT):t 0 < T < i, -a(T) ( ( -B(T) + C(t))

Let XI(t) = inf K(t() - C,t - t)(c, T)eA1 (I c )

X2 (t) - sup - (() - &,i - T).
(E,t)eA2 (t)

Then (III > X (t)u(AI(t)) - 2(t)u(A2 (t)) where u is Lebesgue measure on R
2
.

We now show that lim Xl(t) m and lim X2(t) - 0. The first limit follows

t+t tt0

because both a(t) and 8?t) are uniformly Llpechitz continuous. That is, there

exists a constant L such that if t > t0  and e(t) > 0, then

la(t) - I ( L(t - T) for all (E,T) e A1 t). Therefore, if (C,T) e A 1(t), then

2(ci(t) - C)2
-(t-T) (t) E

K(a(t) - ,t - t) = e 4(t T)

2.r2 (t - T)'2
2

(t-) 0 - (t-T)
e 4

e -4- ( -0)

2 2(t - )o

Hence X (t) = inf K(a(t) - ,t - r) * o as t + to .

(&, t)eAl(t)
On the other hand, X 2(t) - 0 as t + t for the following reason. If

(F,T) e A2 (T), then E < 0. Hence, a(t) - C > a(t). Therefore, for

(C,t) e A 2(t),
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2
-(t-r) - xt

0 4(t- t)
K((t) - ,t- r) 4 et e

2 2 (t - T) 
2

From this it follows that 2 (t) - sup K(a(t) - E,t - T) + 0 as t + t0
(Er )eA2 (t)

Now choose tI > to so that C(tI ) > 0, e(t) < C(t 1 ) for t e (t0 ,tl), and

X (t) > 4A (t) for t e (t0,tj). Let h(t) - 8(t) + L c(t We consider two
1 2 01t1

cases.

Case 1: Suppose there exists , e t 0 ,t 1 ) sth that a(t) ( h(t) for all t < t,

and a(t) - h(). Let B(t) = ((x,t):t 0 < t ( i h(t) ( x < 8(t) + £(t)). Then
- I -

B(t) C A 1(E), and ti(B(t)) - - E(t)t. Therefore, (A1(i)) > e c(t)t. On the other

hand, (A2 (t)) 4 2c(t)t. It now follows that

III > X1(t)j(A1(t)) - X2 (t)U(A 2 (t)) > 41 2() (t)t A2 (t)2(t)t 0

Case 2: Suppose there exists a sequence {tk I such that t + to, a(tk ) h(tk

and e(t) < E(t k ) for t < tk •

Let L be a uniform Lipschitz constant for both a(t) and 8(t). Choose k so
8Lt I

that A (t ) > I 2(t 2).
1IC k (t) 27

Let

81 (t) - -L(t - t ) + (t 0 ) for t > t ,

6t) - L(t - t ) + a(t O ) for t > t
2 0 0 0

Q- {(,t)162(t) ( x 6 1(t) + E(t k), t 0 t}•

I [(tk)] 2
.pAC - [ 2tC).A

Then A(t k) D Q, and u(Q) c ) Therefore, (A4(tk)) > W [ )3. As

before, U(A2 (tk)) < 2e(t )t . Note that C(t) E (t 1 )" This is because

Akt 
k(t k > h(t k Mt k + - C(t , and hence, r-(tkC k Mtk M tk) k E (t 1 .
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Letting - t k  it now follows that

(III]> A1I(t k )(A1I(t k) - A2 (t k )(A 2(t k))

i x (t ) L Wt - _x2(t()2A(t )t

t

( x(tk) I c(tk) 2  
-2c (t ) (t )tk

tI tk
S --- )~ Ct )(t I] - 2c(t (t )te (t JXt) I I Ic 2 k

- 2c(tk )2 (t k)t k- 2e(tk )2 (t k)t k - 0

Therefore, [II] > 0, and the proof of the lemma is complete. //

Note that because f(v) is discontinuous we cannot immediately apply the standard

comparison theorems to solutions of Equation 1.1. We can, however, prove the following

result which is an application of the preceding theorem.

Theorem 4.2! Suppose that the functions o1(X) and p2(x) satisfy the conditions

(1.3) with p1 (x) 4 P2 (x) in R, and v1 (x,t) and v2 (x,t) are the solutions of

Equation 1.1 with initial data 01 (x) and V2 (x). Prrthermore, suppose that the

curves ( t) and a2(t), given by v1 (a1 (t),t) - a, al(t) > 0, and

v 2 ((t),t) - a, a2 (t) > 0, are well defined and continously differentiable in

(0,T]. Then, a It) a2(t) in [0,T], and v1 (xt) 4 v2 (x,t) in R x [0,T].

Proof: We first show that a (t) ( c2(t) in [0,T]. Let C(x,t) and *2(x,t) be

solutions of the linear differential equation

t - OX -

with initial data P1 (x) and P2 (x), respectively. Then a1(t) is a solution of the

integral equation

(4.1) a - 1 (a1 (t),t) - N( 1 )(t) in (0,T)

while a 2(t) is a solution of the integral equation

a - *2(a 2 (t),t) - (o2)(t) in (0,T)
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Because P(x) 4 02(x) in a it follows from the usual comparison theorem for

parabolic equations that *,I(x,t) *2 (x,t) in I x (0,T). Thus,

(a I(t),t) *2( o1(t),t) in (0,T), and, from (4.1),

a - #2 (0 1 (t),t) 4 (a)(t) in (0,T)

That is, aI (t) is a lower solution on (0,T] for Equation 1.1 with initial data

02(x). From Theorem 4.1 it follows that o(t) • 02(t) in (0,T).

we now show that v1 (x,t) C v2 (x,t) in It x (0,T). First assume that

x 0 a2 (t). Then, since aI(t) • a2 (t), it follows that

v (a (t),t) C a - v2(a2(t),t). We also have that v,(x,t) < a and v2 (x,t) < a

for x > a2 (t), t e (0,T). Therefore, for x > o2 (t), both v (%,t) and v2 (xt)

satisfy the linear differential equations

Vt , Vxx - V

Since V1(x) -C 02(x) it now follows from the usual comparison theorem for parabolic

equations that v1 (x,t) 4 v2 (x,t) for x > o2 (t), t e (0,T).

If 01 (t) 4 x 4 a2 (t), then v1 (x,t) 4 a 4 v2 (xt). Finally, if x e (0,01 (t))

then both V1(x,t) and v2 (x~t) are greater than the parameter a. Thus, they both

satisfy the linear differential equation

vt - Vxx- v + I

Since vI(aI(t),t) - a C v2 (a(t),t) and -P(x) C V2 (x), it follows that

v (x,t) C v2 (xt) for x e (0,II(t)), t e (0,T).

We have now shown that v1 (xt) 4 v2 (xt) in le x (0,T). Since

vk(-x,t) - vk(xt), k - 1,2, the result follows. //
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Section 5. Regularity of s(t)

In this section we prove that s(t) C I(0,T) and s'(t) is a locally Lipschitz

continuous function. In the previous section we showed that 8(t) is a uniformly

Lipschitz continuous function. Hence, there exists a positive constant N such that

fs(t i) - s(t0 )I ' MIt1 - t0 l for t0 , t, e (0,T), and s'(t) exists almost

everywhere in [0,T]. We first prove the following preliminary result.

Theorem 5.1: Assume that to  is chosen so that s'(t 0 ) exists. Then positive

constants c and M, can be chosen so that if ItI - t01 < c, then there exists a

Lipschitz continuous function a(t), defined on [O,t, + c], such that:

(a) a(t) - s(t) in [O,t I]

(b) 181(t 0 ) - M'(t +)I -C Mlt- 0

(c) a(t) is a lower solution in [O,t I + C]

Proof: For tj sufficiently close to to we define the function a(t) as follows.

For t 4 tI let a(t) = s(t), and for t > t, define a(t) implicitly by

(5.1) t (a)(t) t (a)(t 0 + (t - t +) + It- 01lt - t 1I

where the constant y is to be determined. Since xX,t) * 0 in U+ x + the

implicit function theorem guarantees the existence of a(t) in a neighborhood of

t1. Since s'(t 0 ) exists it also follows that a'(t+) exists. The proof of Theorem

5.1 is now broken up into a few lemmas.

Lemma 5.2: There exist positive constants y1 KI, and M1  such that if y > K1
I+

and It1 - t01 < ell then 0 < s'(t 0 ) - Q (t ) <H

Proof: Note that

*(sto ),t0 ) ts(to),t0 ) - *t(s(t1)ot )
O '(t ) I *.(S(t 1)tl I s8(t 0)  * x(B(tl),t I

y1t - t 0
+ X(S(tl),t I

The result now follows because V(x,t) is an infinitely differentiable function in
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i x R, (Xu(t).t) is negative and bounded away from zero in (O,T), and s(t) is a

uniformly Lipschitz continuous function.

Lemma 5.3: Let 1 be as in the preceding lemma. There exists a positive constant

K such that if tt1  " t01 < e and y > K2 , thenK2  2

O( )'(t ) - ( )'(t ) It 1  - toI.

Proof: From (2.2) it follows that

f( 1 - *(8)+t0) [ K(a(t1 1  " F,t1) " K(s(t0) - )d

0

+ f K(a(t) -a(),t - l)( s'() - W tod

to

0

+ : K(a(t 1  1 + u l(),t I - T I) a'(T) + al(t+)JdT

to0-0 j Klslt 0) 4 S(t),t 0 " r)Is'Ir) + S'(t 0)]drJ

- [A] + (B] + [C]

Since K(x,t) is infinitely differentiable for t > 0, it follows that there

exists a positive constant D I, independent of y, such that

[A] ). -D11t 1 - to,

We now consider [B]. Assume that t1 > to. The case t I < t0  is similar.

Since a(t) - s(t) for t 4 t 1  we may rewrite B] as

to

[B f K(s(t I - s(T)t I - T) - K(s(t - s(r),t 0 - Tl)s'(l)dr1 1 0
toJ tK((t 0 I)-s(r) ,t0 t) S' (t0 )-K(s(t)-s() ,t1-rl' (t ) ] dr

0
t 
0

t I+

+ f K(s(t - s(T lt I - T)(Q'(T) - a'(t ))dT
to0
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Recall that Is'(t)l 14 wherever sl(t) exists, and, from the preceding lemma,

(t+) < '(tO). Therefore,

t
(SI > -2N f IK(s(t 1) - s(t),t 1 - T) - K(s(t 0) - X(T),t 0 -T)IdT

0
t1

-2 f K(s(t1 ) - s(T),t I - T)dT
to

> -D2 It - t 0

for some positive constant 02, independent of y.

Similarly,

(C) ;P -D 3It1 - t01

for some constant D3  independent of y. In fact, this computation is easier because

K(M(t + u(T),t I - T) and K(s(t 0 ) + s(T),t 0 - T) are smooth functions of T.

Choosing K2 -D + D 2 + D 3 the result follows.

Lemma 5.4: There exists a positive constant e2 such that if ItI - t01 < e2 and

y ) K2 , then a(t) is a lower solution on 10,t I + E2].

Proof: Since a(t) - s(t) on [0,tl) it follows that

(a)(t) - e(a)(t) on [0,t 1 ]

It follows from Lemma 5.3 that there exists a positive constant e2 such that if

0 < t - t1 < E21 ItI - t0  < E 2P and I > K2 then

t(a)(t) - (a)(Ct 1 ) 0(s)(t + (t - t)) - *(s)(t O)
> -Ylt - tIt -t t - t 1 0

That is,

ot (0)(t) -ot0(sl(t 0 + (t - ill I -7It I - t 01(t - t ) I

On the other hand, from the definition of a(t),

(a)(t) - e (s)(t + (t - to) - -YIt - to I~t - t

Since (t 0 Wt 0  Ct - tj)) 41t Cs)(t 0 + (t - t1 )) it follows that
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O(a)(tM > a t on ft 1 1 t1 + 21

and, therefore, a~t) is a subsolution on [O,t 1 I. £C2]

This completes the proof of Theorem 5. 1. //

Theorem 5.5: s(t) 6 C1 (0,T). Furthermore s'(t) is a locally Lipschitz continuous

function.

Proof: Suppose for the moment that t 0  is chosen so that 91(t.) exists, and let

act), e, and K1 be a in Theorem 5.1. From Theorem 4.1 it follows that

acgt) -9 8(t) in 10,t I + el. Therefore, if s'(t,) exists, then

41t1  ~a(t+) )o 81(t ) - K41t I o From the proof of Theorem 5.1 we conclude that

£ and N, may be chosen to depend continuously on to. Therefore, we may choose

* > 0 such that if s'(to) and s'(ti) both exist, then s'(tl) ) s'(t0 ) - M1 It1

t0 1, and, switching the roles of t1 and to, al(to) ;P s9(t) - M1It 1 - tok. This

implies that if al(t) exists for all t 6 (0,T), then s'Ct) is a locally Lipschitz

continuous function. So it remains to provs that s'(t) exists in (0,T).

Let to now be any point in (0,T). Choose e and M4 such that if

It 1 - tol + It 2 - tol < e, and el(ti) and 8'(t 2 ) both exist, then

Is'(t 1 ) - s'(t 2 )I N M11ti - t21. Lot {tn ), n - 1,2,..., be a sequence which

satisfies

a) 91(tn ) exists for each n

b) it n - tol < Lj 2-(n+).
M 1

Let p. - a' Ct ) Note that (P n forms a Cauchy sequence. This is because if

n > m, then Itn - tmIn < 2-n, and, therefore, Is'Ctn) - $s(t )I (

4 1t - tm 4 -n Hence, P - lim Pnexists. We show that s'(t.) - P.

Let n >0 be given and choose n so that 2 n ad P 2 ~n 2 ~ I

is chosen so that It - to, < 1- 2- (n+1) and alCt) exists, then It - tnl < It -O

+ it -L 2-n and therefore, 1s'(t) - Pn I M1C N In < 2 -n. Hence,
t0  tnl M N 1t

181(t) -PI e. I61(t) -n + 'P n -' e. n. Since s(t) is absolutely continuous this

implies that
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t srd (p n.y)(t -to) -

___t) - I p af __ _ _ _ -

~~ ~t - to

q(t) - at 0)

Therefore s*(t 0) = ~ 01 t t 0 .
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Section 6. Threshold Results

We have so far proven the following result.

Lemma 6.1: Suppose that there exist linear functions Z I(t) and t2 (t) which are

respectively lower and upper solutions on [0,T]. Furthermore, assume that T < - and

-i1 T I 12
(i. Then there exists a unique continuously differentiable function

st) which satisfies the integral equation (1.5) in [0,T). Moreover s'(t) is

locally Lipschitz continuous in (0,T).

In this section we find sufficient conditions on the initial datum, P(x), for

s(t) to exist in e+ and lim s(t) -.

In Section 2 we discussed the existence of lower and upper solutions. It was

shown that an upper solution always exists in [o,11, and there exist constants 0

and r such that if x0 > e, then a vertical line I(t) - x, where x > x0 - r, is

a lower solution on le. We now show that if x0 > e then s(t) can be extended to

[T,2T]. An induction argument can then be used to show that s(t) exists in R.

By Lemmas 1.2 and 6.1 the solution, v(x,t), of the equation (1.1) exists in

R x [0,T]. To show that s(t) can be extended to the interval [T,2T we wish to

apply Lemma 6.1 with o(x) replaced by v(x,T). To do this it is necessary to show

that v(x,T) satisfies the assumptions (1.3).

Clearly v(x,T) e C1(2). Replacing x by -x in equation (1.7) and using the

assumption that (x) - v(-x) it follows that v(x,T) - v(-x,T) in R. Kpplying the

maximum principle in the regions jxi < s(t) and lxj > s(t) separately it follows

that v(x,T) e [0,1] in R. Moreover, since s'(t) is a Lipschitz continuous

function it follows from the Schauder estimates (see [4], page 65) applied to the

rogions Jxj < 8(t) and lxi > s(t) separately that vxx(X,T) is a bounded

continuous function except possibly at x - s(T). Finally, the maximum principle

applied to vxx(xt) implies that vx(x,T) < 0 in e+ . We can now apply Lemma 6.1 to

conclude that s(t) can be extended to the interval [T,2T].

This completes the proof that if x0 > 6, then 9(t) exists in R+.

Furthermore, s(t) > x0 - r in l+ where r was defined in Lemma 2.6. It remains to
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show that there exists a positive constant 60  such that if x0 > 00 then

lI s(t) - *. This is done by constructing a particular function P(x) which we show

to be superthreshold. We then prove that if x0  is sufficiently large then

v(xT) > P(x) for some T. From Theorem 4.2 it then follows that o(x) is

superthreshold.

In order to define P(x) note that the ordinary differential equation

(6.1) p" + f(P) - 0

has the first integral

(6.2) j (p.)
2 + F(P) - k

P
where k is constant and F(P) f f(u)du. Choose K e (a,1) so that F(K) - 0 and

0
suppose that 0S (zI]. Then F(S) > 0 and F'(B) - f(B) > 0. Define the length

- f (2r(S) - 2F(q)1- /2 dq
0

For jxj 4 b let P(x) be the solution of (6.1) with first integral

I (P')2 + F(P) - F(O)

and which satisfies the condition P'(0) - 0. Then P(x) > 0 in

(-b1 ,ba ), P(x) - P(-x) and P(b ) - P(-b ) - 0. Define P(x) - 0 for 1x1 > be, We

now show that P(x) is superthreshold. Our proof follows Aronson and Weinberger [2,

Proposition 2.2].

Lems 6.2: Let u(x,t) be the solution of equation (1.1) with initial datum P(x).

Then lia u(x,t) - I for each x e R.
t

Proof: The proof is broken into two parts. We first show that lim v(x,t) - T(x)
tw

uniformly on each bounded interval where T(x) is the smallest solution of (6.1) which

satisfies the inequality

r(x) ) P(x) in R

We then show that T(x) S 1.
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From the comparison theorems we conclude that u(x,t) e EOoi and u(x,t) ) P(x)

in a x Hence, for any h > 0 we have u(x,h) ) u(x,0) in R. From Theorem 4.2

it follows that for any h > 0, u(x,t + h) N u(x,t) in R x 9+
. 

Therefore, for any

x, u(x,t) is a nondecreasing function of t which is bounded above. Therefore the

limit T(x) exists. Clearly r(x) e [0,1] and T(x) ) P(x) in IL

We now show that T(x) is a solution of (6.1) in a. Define c(t) by

u(o(t),t) - a, a(t) > 0. Note that a(t) is a nondecreasing function. Hence

lim ott) = x exists for some R 6 (0,-1.
t 4

Note that for arbitrary n > 0 and (x,t) 8 R x g
+
,

*t+ n O(T)
(6.3) u(x,t + n) - f K(x - ,t)u(,n)dt + f dT f K(x - &,t + - )d•

-- i -O(T)

By means of the substitution a - t - n in the second integral on the right hand side

of (6.3), u(x,t + n) can be rewritten in the form

a t o(s+n)

u(x,t + n) - f K(x - &,t)u(E,n)dE + f de K(x - C,t - s)d•
-- 0 -o(s+q)

Since u( ., ) + r(-) it follows from the monotone convergence theorem that

a t x

(6.4) T(x) - f K(x - E,t)T()dC + f ds f K(x - &,t - s)dE

--e 0 -X

for each x e IL

From this representation we conclude that T Is continuous. Since the

convergence of the continuous functions u to T is monotone it follows from Dini's

theorem that u + T uniformly on bounded intervals. We now show that T(x) satisfies

the steady state equation (6.1) in 2.

First assume that jxj < R. We rewrite (6.4) as

-- -t
T(x) - f X(x - E,t)r(C)dE- f ds f K(x- E,t- s)d + I- a
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It then follows that

r"(x) 1K X K(x - E. t) TM ~dE - f" do f -- K (x - E,t - s)dE
-. -- R\(-x,x]

and

d t
0 - r(x) - f KtjX - EA)T(E)dE -f 4sf - ( K - Et -_)dE + -

- -ft R\[-xx]

valid for arbitrary t > 0. Since K(x,t) is a solution of the differential

equation Kt - Kxx - K it follows that T" + f(T) = T"- T + I - 0 for Jx! < R A

similar argument shows that T" + f(T) - 0 for Jxi >

Now if q(x) is any solution of (6.1) with q e (0,1] in R and P(x) 4 q(x)

in R then, from Theorem 4.2, it follows that u(x,t) ( q(x) for each x e R. .,ence

T(x) - q(x) so that T is the smallest solution with these properties.

Having proven that T(x) in a solution of the steady state equation (6.1) it

remains to show that T - 1. Suppose that there exists x, such that y - T(x ) < 1.

Then T(x) satisfies (6.2) with k ) F(y). Hence {k - F(q)}-1 /2 is defined on

[0,-f). Therefore T(x) is implicitly given by

x - x I T [2(k - f(u)I] "du
T

where the sign is determined by T'(x ). It follows that r(x) becomes zero with

T' # 0 at a finite value of x, so that T cannot be a nonnegative solution

q" + f(q) - 0 for all x. This contradiction shows that T(x) - lim u(x,t) - I for

each x S R and hence P(x) is superthreshold. //

The following result completes the proof of Theorem 1.1.

Theorem 6.3: Choose a e (0,-). There exists a constant 0 such that if O(x)
2 0

satisfies (1.3) with x0 > 60 then s(x) Is superthreshold.
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Proof: Recall the constants 6 and r defined in Lemma 2.6 and b6, P(x), u(x,t)

defined in this section. Let eo - max{6,b 0+ r). We show that V(x,1') > P~x) in

Rt for some T. Theorem 4.2 then implies that v(x,t) > u(x,t - T) for x e R,. t > T.

Since liin u(x,t) - I for each x e R it then follows that v(x) in superthreshold.

t++
Since x0 > max(6,b 0 + r), Lemma 2.6 implies that 9(t) > b 0in 3

Therefore, v~x,t) >a for lxi < b 0 From the maximum principle we conclude that

if z(x,t) is the solution of the initial-boundary value problem

zt - zx - z +1I for lxi < bl tSRe

z~x,0) - (x) for 1x1 < b

x(b,,t) - z(-b8 ,t) - a in le
1

then v(x,t) >z~x,t) for lxi < 8.l t e le4. *From Friedman (5, page 1581 it follows

that lim z(x,t) - q(x) where q(x) is the solution of the steady state equation
t+

q- q4. I - 0 for lxi 4 ba

q(-b) 0 q(b ) a

Therefore, there exists T such that V(X,T) > q(x) for lxi 4 b *It is also true,

however, that q(x) I> P(x) for jxi r b a' This Is because if y is chosen so that

PCy) - a, y > 0, then P~x) satisfies the steady state equations

P" - P + 1 -0 for lxi < y

with

P -Y P(Y) -a

Since y < b ait follows that P~x) < q~x) for lxi < y. On the other hand, if

x e (y,b ) or x e (-b8 ,-y) than P(x) < a < q(x).

We have now shown that for lxi < b8 P~x) < q~x) < v(x,T). Finally, if

lxi ), b 0 then P(x) - 0 <v(x,T). ///

The following results will be needed in a later paper when we study the full

system (1.2).

Theorem 6.4: Choose a e (0.-1) and let 0 be as in Theorem 6.3. Suppose that

d < 1 and r, > 0. There exists T > 0 such that if P(x) satisfies (1.3) with

10 > eo, then v(x~t) > d for lxi < r,, t > T.
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Proof: Let P(x) be as in Lemna 6.2. It was shown in the proof of Theorem 6.3 that

for some time T1, v(x,t) > P(x) for x e R, t > T1. If u(xt) is the solution of

(1.1) with initial datum P(x), then, from Theorem 4.2., it follows that

v(xt + T) > u(x,t) in t x et. Since lia u(xt) - I for each x e R. and
t .

UI(x,T) ( 0 in e x le, there exists T2  such that u(x,t) > d for

lxi < rI , t > T2. Hence, if t > T - T1 + T2, and jxi < rI, then

v(x,t) > u(x,t - T1 ) > d. I

Corollary 6.5: Choose a e 10,1) and K < - a. Assume that d < I - K and
2Ol 2

r, > 0. Then there exist constant 8, r, and T such that if V(x) satisfies (1.3)

with x0 > 8, and v(x,t) is solution of the differential equation:

v t - vxx + f(v) -K in i x k+ ,

v(x,O) = V(x)

then v(x,t) > d for lxi < rI , t > T. Furthermore, the curve 9(t), given by

v(s(t),t) - a, s(0) - x0 , is a well defined, smooth function, a'(t) is locally

Lipschitz continuous, 1±3 s(t) - -, and s(t) > xO - r in 3t.

Proof: Let u(x,t) - v(xt) + K. Then u(xt) is the solution of the differential

equation:

ut - ux+f(u) in R x

u(x,0) = O(x) + K in R

Were,•

J-u for u <a+ K
f I(u)

1 - u for u > a + K

Since a + K < I, the result now follows from applying Theorems 1.1 and 6.4 to

u(x,t). III
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